A Model Testing on Health Literacy, Knowledge about Vitamin D, and Actual Behavior in Sunlight Exposure

Angela YM Leung,¹,² Mike KT Cheung,³ and Iris Chi⁴

¹School of Nursing, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
²Research Centre on Heart, Brain, Hormone and Healthy Aging, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
³Centre on Research and Advocacy, Hong Kong Society for Rehabilitation, Hong Kong, China
⁴School of Social Work, University of Southern California, Los Angeles, CA, USA
Health literacy (HL) has been prioritized in public health and rigorously studied since the 1990s.

HL is defined as the ability to receive, process, and understand basic health information and make health decisions using that information (Nielsen-Bohlman, Panzer, & Kindig, 2004)

Poor health literacy is associated with

- poor physical and mental health (Wolf, Gazmararian, & Baker, 2005)
- higher hospitalization rates (Baker et al., 2002)
- Less use of flu vaccination (Miller, 2004; Scott, Gazmararian, Williams, & Baker, 2002)
- increased mortality (Baker et al., 2007; Sudore et al., 2006)
Knowledge and motivation were considered as factors contributing to the development of health literacy (Baker, 2006; Nutbeam, 2008); $KN + M \gg HL$

HL influences knowledge, which in turn affects health outcomes (Lee et al., 2004; Paasche-Orlow & Wolf, 2007); $HL \gg KN \gg OC$

Knowledge affected health literacy skills and eventually led to health-related behavior and outcomes (Squiers, Peinado, Berkman, Boudewyns, and McCormack, 2012); $KN \gg HL \gg Beh$
Vitamin D and sunlight exposure

- Vitamin D deficiency is common among older adults; however, it is often under-recognized (Dharmarajan, Akula, Kuppachi, & Norkus, 2005; Wat, Leung, Tam, & Kung, 2007).

- Vitamin D can be supplemented by three methods:
 - diet (oily fish, cod-liver oil, and egg yolks)
 - dietary supplements, and
 - ultraviolet B radiation from the sun

- Exposure to sunlight for 15–30 minutes raises serum vitamin D (Chel et al., 1998)
Aims of the study

- to assess whether health literacy play a role in the complex relationship among knowledge, motivation (both personal and social motivation), and health behavior.
1. Are knowledge about vitamin D (KN), attitude towards sunlight (Motivation), doctor recommendation (Motivation), and health literacy (HL) directly associated with sunlight exposure behavior (Beh)?

2. Would HL serve as a determinant of KN and Motivation and these in turn affect sunlight exposure behavior (Beh)?

3. Would KN and Motivation affect HL, which in turn influences sunlight exposure behavior (Beh)?
Fig. 1. Conceptual framework of the proposed study

INFORMATION
Knowledge of vitamin D

MOTIVATION (SOCIAL)
Dr recommendations for sunlight exposure

MOTIVATION (PERSONAL)
Attitudes toward sunlight exposure

BEHAVIOR
Actual sunlight exposure

HEALTH LITERACY
Method

- Cross-sectional survey with 23 residential care homes for elders and 7 local community centres for older adults in HK from May 2011 to Jan 2012
- Inclusion criteria:
 - aged 65 or older
 - ethnic Chinese
 - cognitively intact (Short Portable Mental Status Questionnaire score > 7)
 - able to communicate in Cantonese or Mandarin
 - living in a residential care home for older adults for at least 3 months
- Structural equation modeling was employed
Measures

- **Sunlight exposure behavior**
 - “In the last 7 days, how long did you expose yourself to sunlight every day on average?” Ten choices were offered.
 - Recode it as 1 = sufficient sunlight exposure; 0 = insufficient

- **Health literacy**
 - the 24-item Chinese Health Literacy Scale for Chronic Care (Leung et al., 2013)
Measures

- **Knowledge of vitamin D**
 - bone health
 - calcium absorption
 - can be supplemented by sunlight exposure
 - The minimum time needed for sunlight exposure in summer / in winter

- **Attitude toward sunlight exposure:**
 - “I like sunlight”
 - “I like outdoor activities”
 - “The time I expose myself to sunlight is enough.”

- **Doctor recommendations:**
 - “Has your doctor ever recommended that you receive sunlight exposure?”
Demographics

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>79.2</td>
<td>(8.38)</td>
</tr>
<tr>
<td>Gender</td>
<td>499</td>
<td>77.0</td>
</tr>
<tr>
<td>Education</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No formal education</td>
<td>271</td>
<td>41.8</td>
</tr>
<tr>
<td>Primary (Grade 1-6)</td>
<td>265</td>
<td>40.9</td>
</tr>
<tr>
<td>Secondary (Grade 7-13)</td>
<td>90</td>
<td>13.9</td>
</tr>
<tr>
<td>Tertiary/University</td>
<td>22</td>
<td>3.4</td>
</tr>
<tr>
<td>Marital</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single, divorced, widowed</td>
<td>430</td>
<td>66.4</td>
</tr>
<tr>
<td>Married</td>
<td>218</td>
<td>33.6</td>
</tr>
<tr>
<td>Occupation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retired</td>
<td>537</td>
<td>82.9</td>
</tr>
<tr>
<td>Homemaker</td>
<td>109</td>
<td>16.8</td>
</tr>
<tr>
<td>Employed</td>
<td>2</td>
<td>0.3</td>
</tr>
<tr>
<td>Living status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residential care homes</td>
<td>279</td>
<td>43.1</td>
</tr>
<tr>
<td>Own homes</td>
<td>369</td>
<td>56.9</td>
</tr>
<tr>
<td>Number of years living in RCH</td>
<td>5.5</td>
<td>(4.8)</td>
</tr>
<tr>
<td>Number of illness</td>
<td>2.2</td>
<td>1.36</td>
</tr>
</tbody>
</table>
Table 2. Knowledge about Vitamin D (correct response)

<p>| Vitamin D is for maintaining bone health | 96 | 14.8 |
| Vitamin D is for supporting calcium absorption | 70 | 10.8 |
| Vitamin D can be increased by sunlight exposure | 141 | 21.8 |
| Minimum time for sunlight exposure in summer is 30 minutes | 124 | 19.1 |
| Minimum time for sunlight exposure in winter is 60 minutes | 68 | 10.5 |</p>
<table>
<thead>
<tr>
<th>Attitudes toward sunlight exposure *</th>
<th>M</th>
<th>% (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enjoy sunlight exposure</td>
<td>3.6</td>
<td>(1.3)</td>
</tr>
<tr>
<td>Enjoy outdoor activities</td>
<td>4.2</td>
<td>(0.9)</td>
</tr>
<tr>
<td>Feel that had had sufficient sunlight exposure</td>
<td>3.2</td>
<td>(1.3)</td>
</tr>
<tr>
<td>Doctor recommendation for more sunlight exposure</td>
<td>189</td>
<td>29.2</td>
</tr>
<tr>
<td>Actual behavior for sufficient sunlight exposure</td>
<td>74</td>
<td>11.5</td>
</tr>
<tr>
<td>Health literacy #</td>
<td>29</td>
<td>(11.8)</td>
</tr>
</tbody>
</table>

* Ranged from 1 to 5, higher score indicated higher preference.
Ranged from 0 to 48, higher score indicated higher level of health literacy.
Fig. 2. Testing the relationships among knowledge of vitamin D, attitudes toward sunlight exposure, doctor recommendations, and sunlight exposure behavior.

- **INFORMATION**
 - Knowledge of vitamin D
 - Bone health
 - Calcium absorption
 - From sunlight

- **MOTIVATION (SOCIAL)**
 - Doctor recommendations for sunlight exposure
 - Enjoy sunlight exposure
 - Enjoy outdoor activities
 - Feel that have had sufficient sunlight exposure

- **MOTIVATION (PERSONAL)**
 - Attitudes toward sunlight exposure
 - Bone health

- **BEHAVIOR**
 - Actual sunlight exposure

Correlation Coefficients and Significance Levels

- $\chi^2/df = 2.52; \text{RMSEA} = .049, p = .546; \text{CFI} = .96; \text{TLI} = .94$
- ***$p < .001$, **$p < .01$, *$p < .05$
Figure 3. Testing HL as determinant of knowledge, attitude, and skills.
Fig 4. Testing HL as a mediator of the relationships between knowledge and behavior and between attitude and behavior.

INFORMATION
Knowledge of vitamin D

MOTIVATION (PERSONAL)
Attitudes toward sunlight exposure

MOTIVATION (SOCIAL)
Dr recommendations for sunlight exposure

BEHAVIOR
Actual sunlight exposure

χ²/df = 2.79; RMSEA = .053, p = .346; CFI = .95; TLI = .92
***p < .001, **p < .01, *p < .05
Discussion

- We found that HL was an important factor leading to behavioral change
 - had a direct association with health behavior
 - involved in the indirect relationship between knowledge and behavior
- when individuals possess sufficient knowledge about vitamin D and appropriate levels of health literacy, they are more likely to engage in behavioral change, i.e., receiving appropriate sunlight exposure.
Discussion

- Health literacy also linked the relationship between attitudes and health behavior
 - Attitudes were found to be negatively associated with health literacy, yet health literacy was positively associated with health behavior.

 >>>>> individuals with negative attitudes toward sunlight exposure could still engage in sunlight exposure if they possess high levels of health literacy.
Discussion

- Doctor recommendations are not sufficient to affect health behavior.
 - They had a significant relationship with knowledge of vitamin D.
- Doctors may have only mentioned the knowledge-oriented concept of vitamin D and sunlight exposure in their recommendations without rectifying myths about sunlight exposure
 - thus failing to convince older Chinese adults to change their behavior.
Implications and Conclusion

- Health educators could consider developing interventions to train older adults in
 - both health knowledge and health literacy skills to impart strategies for increasing their vitamin D levels.
 - By increasing their level of health literacy, they may be more likely to engage in appropriate sunlight exposure. (those with negative attitudes toward sunlight exposure)
THANK YOU!

Comments are welcome

Angela Leung
School of Nursing
Email: angleung@hku.hk