Integrating Evidence-Based Practice and Process Improvement Models to Decrease Catheter-Associated Urinary Tract Infection

Flagstaff Medical Center
Flagstaff, AZ
Evidence-Based Practice Department
Objectives

- Define how evidence-based practice, lean six sigma, and the IHI PDSA cycles integrate to achieve sustained practice and process change
- Define original CAUTI practices instituted at Flagstaff Medical Center
- Cite best evidence in evidence-based CAUTI prevention
- Discuss how clinical educators from ED, OR, ICU and Medical-Surgical/Telemetry areas successfully implemented CAUTI prevention practice changes
- Disseminate CAUTI reduction and urinary catheter maintenance practice change data
Our Hospitals:
Flagstaff Medical Center and
Verde Valley Medical Center
“Making Lives Better”
Focus

- Eliminate defects, waste, and variation
- DMAIC Mnemonic
 - D = Define
 - M = Measure
 - A = Analyze
 - I = Improve
 - C = Control
- Process-focused improvement strategy
Advancing Research & Clinical Practice Through Close Collaboration EBP Model (ARCC)

* Defines evidence-based practice using a holistic approach to change
* EBP is a **problem-solving** approach to clinical practice that integrates the conscientious use of **best evidence** in combination with a **clinician’s expertise** as well as **patient preferences and values** to make decisions about the type of care that is provided. **Resources** must be considered in the decision-making process as well.

Step 0: Cultivate a Spirit of Inquiry

Melnyk & Fineout-Overholt’s Advancing Research & Clinical Practice through Close Collaboration (ARCC) Model

Potential Strengths
- Philosophy of EBP (paradigm is system-wide)
- Presence of EBP Mentors & Champions
- Administrative Support

Clinicians’ Beliefs About the Value of EBP & Ability to Implement the EBP Process*

Nurse Satisfaction
- Cohesion
- Intent to Leave
- Turnover

Decreased Hospital Costs

Improve Patient Outcomes

Potential Strengths
- Lack of EBP Mentors & Champions
- Inadequate EBP Knowledge & Skills
- Lack of EBP Valuing

Implementation of ARCC Strategies
- Interactive EBP Skills Building
- EBP Rounds & Journal Clubs

* Scale Developed
+ Based on the EBP Paradigm & using the EBP process

Scale Developed

Based on the EBP Paradigm & using the EBP process

Northern Arizona Healthcare
Organizational Culture: Lean Six Sigma and EBP

* Lean Six Sigma
 * Introductory Lean classes
 * Critical mass of both Lean Six Sigma Green Belts and Black Belts
 * Lean Six Sigma process improvement tools widely used throughout facility
* EBP
 * Small group of educators and one Clinical Nurse Specialist trained in EBP principles
 * EBP tools used among educator/CNS group and in limited interactions with certain disciplines
Integrating LSS, EBP, and PDSA Cycles

- Step 0 = Cultivate a spirit of inquiry
- D = Define
 - Step 1 = Clinical Question (PICOT)
- M = Measure
 - Step 2 = Search for best evidence
- A = Analyze
 - Step 3 = Evaluate the evidence
 - Step 4 = Determine best fit
- I = Improve
- C = Control
 - Step 5 = Outcomes evaluation
- Step 6 = Dissemination plan
Do System-Based Interventions Affect Catheter-Associated Urinary Tract Infection?

By Margo A. Halm, RN, PhD, ACNS-BC and Nancy O’Connor, RN, BSN, MSBA, CIC

Table 2
American Association of Critical-Care Nurses evidence-leveling system

<table>
<thead>
<tr>
<th>Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Meta-analysis of multiple controlled studies or metasynthesis of qualitative studies with results that consistently support a specific action, intervention, or treatment</td>
</tr>
<tr>
<td>B</td>
<td>Well-designed controlled studies, both randomized and nonrandomized, with results that consistently support a specific action, intervention, or treatment</td>
</tr>
<tr>
<td>C</td>
<td>Qualitative studies, descriptive or correlational studies, integrative reviews, systematic reviews, or randomized controlled trials with inconsistent results</td>
</tr>
<tr>
<td>D</td>
<td>Peer-reviewed professional organizational standards, with clinical studies to support recommendations</td>
</tr>
<tr>
<td>E</td>
<td>Theory-based evidence from expert opinion or multiple case reports</td>
</tr>
<tr>
<td>M</td>
<td>Manufacturer's recommendation only</td>
</tr>
</tbody>
</table>

From Armola et al,17 with permission.

Table 1
Matrix of evidence (P < .05)

<table>
<thead>
<tr>
<th>Reference</th>
<th>Intervention and results</th>
<th>Evidence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yoon et al12</td>
<td>Hospitalwide education: catheter tagging</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Catheter insertion date tagging increased from 46.2% (baseline) to 84.6% (after education)</td>
<td></td>
</tr>
<tr>
<td>Meddings et al11</td>
<td>Daily checklist or reminder system</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Catheter reminders or stop orders (N = 14 studies)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Catheter days declined 2.61 days per patient in intervention group (mean duration decreased 37%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pooled standardized mean difference for duration of catheterization was -1.11 days overall, including significant decrease when stop orders were used (but not reminders)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Catheter-associated urinary tract infection (CAUTI) rate (per 1000 catheter days) decreased by 52% with either intervention</td>
<td></td>
</tr>
<tr>
<td>Fuchs et al10</td>
<td>Daily checklist for catheter initiation/continuation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Catheter days declined from 402 (baseline) to 380 (after intervention)</td>
<td></td>
</tr>
<tr>
<td>Elser et al10</td>
<td>Nurse-driven daily evaluation of catheter indication</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Catheter days (mean) declined from 311.7 to 298.6 days per month</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inappropriate catheter use = 32% (common reasons included incontinence, skin integrity concerns, obesity, diabetes, perceived discomfort, patient’s request for comfort)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CAUTI rate (mean) decreased from 4.7 to 0 per month during 6-month intervention period</td>
<td></td>
</tr>
<tr>
<td>Fakih et al9</td>
<td>Daily review of catheter indication</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Catheter days declined from 203 (before intervention) to 162 per 1000 patient days (after intervention)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unnecessary catheters decreased from 102 (before intervention) to 64 catheter days per 1000 patient days (during intervention) but increased to 91 catheter days after the intervention</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inappropriate catheter use decreased from 50.4% (at baseline) to 39.6% (during the intervention) and 48.7% (after the intervention)</td>
<td></td>
</tr>
<tr>
<td>Apsaramathanarak et al14</td>
<td>Multidisciplinary daily review of catheter indication</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Catheter days declined from a mean of 11 (SD, 2.5) to a mean of 3.0 (SD, 0.7) days</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inappropriate catheter use decreased from 20.4% to 11%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CAUTI rates decreased from 21.5 to 6.2 per 1000 catheter days</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Antibiotic costs decreased 63%, from $3739 (SD, 1422) to $1378 (SD, 601)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hospitalization costs decreased 58%, from $366 (SD, 620) to $154 (SD, 34)</td>
<td></td>
</tr>
<tr>
<td>Knoll et al15</td>
<td>Multifaceted education with system redesign/rewards/feedback</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Catheter prevalence decreased from 15.2% to 9.3% (intervention phase I), 13.6% (phase II) and 12% (phase III)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nonordered catheters decreased from 17% to 5.1% and nonindicated catheters decreased from 80% to 50%</td>
<td></td>
</tr>
<tr>
<td>Oman et al16</td>
<td>Multifaceted education, charge nurse catheter rounds, product review/standardization</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Catheter days declined on surgical unit from 3.01 (phase I) to 2.2 (phase III)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CAUTI rates maintained at 0 per 1000 catheter days from baseline to after the intervention (pulmonary unit)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Length of stay (mean) decreased from 7.39 to 7.21 and 6.72 days in 3 phases (pulmonary unit)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Product removal of silver alloy catheters had annual cost savings of $52,000; no adverse effect on CAUTI rates</td>
<td></td>
</tr>
</tbody>
</table>
Equipment Change and Standardization

- **New kit**
 - Silicon catheter
 - Sterile gloves
 - Hand gel for provider
 - Castile wipes
 - Betadine swabs
 - Lubricating jelly
 - Urometer standard
 - Securement device standard
 - Kit standardized throughout hospital

- **Old kit**
 - Silicon catheter
 - Sterile gloves
 - Cotton balls
 - Tweezers
 - Betadine packet
 - Lubricating jelly
 - May or may not have urometer
 - No securement device
 - Multiple kits in use and not standardized

All RNs watched educational video and took quiz on appropriate catheter insertion and use of new kit
Audit Planning

- Standardized audits addressing:
 - Use of new kits
 - Common catheter mishaps
 - Appropriate clinical indications

- Additional education addressing specific problems in each clinical area

- Continuous feedback regarding results

- Involvement of clinical staff

Table 5

<table>
<thead>
<tr>
<th>Do</th>
<th>Don't</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use aseptic technique to insert catheter</td>
<td>Clean periurethral area with antiseptics</td>
</tr>
<tr>
<td>Secure catheter to prevent movement and traction</td>
<td>Let drainage bag touch floor</td>
</tr>
<tr>
<td>Perform routine meatal cleansing</td>
<td>Disconnect drainage system</td>
</tr>
<tr>
<td>Always keep drainage bag below level of bladder</td>
<td>Routinely irrigate bladder</td>
</tr>
<tr>
<td>Maintain free urine flow by keeping catheter and tubing free of kinks</td>
<td>Routinely change catheters or drainage bags</td>
</tr>
<tr>
<td>Empty bag regularly by using a separate clean container</td>
<td>Clamp tubing during transport</td>
</tr>
<tr>
<td>Disinfect port before and after urine sampling</td>
<td>Clamp catheter before removal</td>
</tr>
<tr>
<td>Replace catheter and system if a break in aseptic technique, disconnection, or leakage occurs</td>
<td></td>
</tr>
<tr>
<td>Consider closed continuous irrigation if obstruction is anticipated</td>
<td></td>
</tr>
<tr>
<td>Consider alternatives (external catheters or intermittent catheterization)</td>
<td></td>
</tr>
<tr>
<td>Use bladder ultrasound to evaluate urinary retention</td>
<td></td>
</tr>
</tbody>
</table>

* Based on information from Gould et al., Fink et al., and Bledgett.

FMC CAUTI Audit Tool

Urinary Catheter Audit Tool

<table>
<thead>
<tr>
<th>Auditor:</th>
<th>Unit:</th>
<th>Unit Census:</th>
<th>Date/Time:</th>
<th>RN Reason? (Free Text)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient Sticker and Primary RN Name on Sticker</td>
<td>Cath System (See Below)</td>
<td>Seal intact? (Y/N)</td>
<td>Cath secured? (Y/N/NA)</td>
<td>Securement type? (See Below)</td>
</tr>
<tr>
<td></td>
<td>Urometer overflowing? (Y/N)</td>
<td>Tubing looped/ kinked? (Y/N)</td>
<td>Green clip used? (Y/N)</td>
<td>Tubing/bag below bladder? (Y/N)</td>
</tr>
<tr>
<td></td>
<td>Bag/ Meter Touching Floor? (Y/N)</td>
<td>Patient sitting up in chair? (Y/N)</td>
<td>Secure grade for each patient? (Y/N/NA)</td>
<td>Sticker insert date? (Y/N)</td>
</tr>
<tr>
<td></td>
<td>Sticker insert time? (Y/N)</td>
<td>Sticker insert initials? (Y/N)</td>
<td>Evidence-based reason? (See Below)</td>
<td></td>
</tr>
</tbody>
</table>

Region Details:
- **B 3W 0**
- **SLT SO**
CAUTI Prevention and Urinary Catheter Care Results
* 100,000 CFU/ml will be the threshold for reporting

* Non-bacteria will no longer be eligible pathogens for symptomatic/asymptomatic bacteremic UTI.

* Urinalysis will not be used for any NHSN criteria.
FMC Foley Audits: Number of audit days (n=192)
FMC Foley Audits: Number of catheters audited per month – Adult patients only (n=924)
FMC Foley Audits: Catheter type per month - Adult patients (n=924)

- Bard
- Other
- 3 Way Irrigation

<table>
<thead>
<tr>
<th>Month</th>
<th>Bard</th>
<th>Other</th>
<th>3 Way Irrigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oct</td>
<td>28</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Nov</td>
<td>20</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Dec</td>
<td>42</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Jan</td>
<td>34</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Feb</td>
<td>24</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Mar</td>
<td>33</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Apr</td>
<td>19</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>May</td>
<td>18</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Jun</td>
<td>31</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Jul</td>
<td>31</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Aug</td>
<td>60</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>
FMC Foley Audits: Catheter securement per month- Adult patients (n=924)

Goal: 90%

FMC Urinary Catheter Focus Study

October 2014 - August 2015

FMC Foley use Indicators: All units, Adult patients (n=924)

- Tamper seal
- Catheter Secure
- Tubing bag below bladder
- Green clip used
- Date/Time sticker applied
FMC Foley use Indicators: All units, Adult patients (n=924)

- Tubing looped/kinked (Goal <10%)
- Urometer overflowing (Goal <10%)
- Bag/meter touching floor (Goal 0%)
FMC Foley Audits: Reasons for use, All units - Adult patients (n=967)

Please note that some cases have more than one reason listed
FMC Foley Audits: Top 5 Evidence Based reasons, All units - Adult patients

- Critically ill patient needing accurate measurement of I and O
- Post-surgical patient within the first 24-48 hours post-op
- Acute urinary retention or obstruction
- Chronic indwelling urinary catheter prior to admission
- Hospice/Comfort Care
Emergency Department Role in CAUTI Prevention

• Quality measures begin when the patient enters the hospital/health care system

• Emergency Department is a hospital front door
 • A major point of entry into the hospital/healthcare system

• Patient outcomes are affected by the quality of our care
 • Trauma
 • S-T elevation myocardial infarction
 • Stroke
 • CAUTI
• Conducted trial of new indwelling urinary catheter kit
• ED inserts “lots of catheters”
 • High use of supplies

• Kit contained extra supplies recommended for prevention of CAUTI
 • Wipes for gross patient contamination
 • RN alcohol gel
 • Securement device
 • Big orange insertion date/time sticker for inpatient RN’s
 • Prevented time wasted scrolling thru chart for insertion date/time
• Sheet clip
Sticker for Date/Time Insertion

Visual reminder for inpatient nurses!
Product Representative Educational Support

• Product Representative clinical educator provided several educational sessions to ED Staff
 • Shift meeting at 0700 and 1900 hrs.

• ED Clinical Educator and ED RN Champion educated remainder of staff

• 100% of staff educated with checkoff list
• Education regarding how to use new kit with demonstration

• Education regarding new guidelines to reduce CAUTI’s

• New hospital policy written establishing new guidelines to reduce CAUTI’s
 • Result -- Overall reduction in IUC placement in the ED

• Video and post test created for larger inpatient staff education
Involvement of ED and Patient Care Technicians

- Previously considered RN only practice
- Education for ED Techs to empty urometers and document urinary output
- Management of drainage system to prevent dependent loops
- Keep urometers below bladder level
- Urometer never touches floor
Technician Training Program and Badge Card for Every RN and Technician

- ED & Patient Care Technician Training Program Created
- Trained existing technicians
- Train all incoming nurses and technicians
Trial Outcomes – The Easy Part

• Staff feedback about indwelling urinary catheter kit overwhelmingly positive
 • Useful
 • Easy
 • Extra supplies helpful

• The ED recommended kit for use house-wide to:
 • Educators
 • Quality (Clinical Value Department)
 • Management

• Hospital-wide transition to this kit
Translation into Practice – The Hard Part

- Live educational audits of patients with indwelling urinary catheters
 - Had nurses implemented what they learned?
 - Were nurses using all parts of kit?
 - Collection bag lower than bladder level
 - Emptying collection bags/uroimeters prior to transport anywhere (no yellow in the hallways)
 - No dependent loops with use of sheet clip
 - Use of securement device
 - Peri-care daily and PRN

- On the spot education by Clinical Educators
Current State – *Maintaining* Evidence Based Best Practices

- Work in progress
- Some ED nurses still want to place IUC’s for inappropriate indications
- Education for alternatives
 - Straight cath to empty bladder
 - Condom catheter for males
 - Risks of placement
- Reinforcement and repetition
Surgical Services……

The accidental late adaptor or laggard if you prefer
Surgical Services Structure

- Consists of Pre-Op, OR, PACU and ENDO
- 11 ORs in Main
- 4 ORs in Outpatient
- Average of about 800 cases per month
- High orthopedic volume
Work in a Specialty Area, OR

- Challenging and Rewarding
- This does not apply to me
- A shifted focus
- Money is a motivator
- Supply Chain differences
My introduction to Surgical Services Educator

- Welcome... teach this new protocol to help prevent CAUTI's.
- P.S. we go live in 2 weeks
- Good luck!

The question I asked myself... how do I get a team of staff who will NEVER get charged with a CAUTI to adapt to a new practice?
The answer:

Persistence
Surgical Services Receptiveness to EBP

- Receptiveness to EBP
 - Mixed reviews
- Tolerance to change
 - New Kits were a pain point
- Decreased Utilization
Audits

* Audits as a teaching opportunity
 * Immediate correction
 * Positive staff interactions
 * Time consuming

* Audits as a data collection tool
 * Had to slightly change this for the surgical services departments
The OR... things are a little different

- Surgical beds are great for surgery, but not much else
 - Where to hang the bag
 - How to keep the tubing out of the way of surgery
- Use of chosen catheter securement device in the OR is not ideal
 - Goal became save the catheter securement device for PACU
- EBP Reason – “The Audits are ever in our favor”
Things are going well, could we do better?

- Audits showed improvement, however talking with the staff revealed other issues
- Gap Analysis
 - Skills Lab
 - Making experienced staff demonstrate urinary catheter insertion
FMC Foley Audits: Number of catheters audited per month - Surgery and PACU, Adult patients (n=81)

- November 2014: 21
- December 2014: 19
- January 2015: 10
- February 2015: 12
- April 2015: 16
- June 2015: 3

Note: No audits conducted since June 2015.
Urinary Catheter Utilization Benchmarks

FMC Ortho/ 3N Utilization Ratio

Data collection was automated in April 2015

FMC Urinary Catheter Focus Study
Surgery and PACU*
(please note: no audits conducted since June 2015)

FMC Foley use Indicators: Surgery and PACU, Adult patients (n=81)

- Tamper seal
- Catheter Secure
- Tubing bag below bladder
- Green clip used
- Date/Time sticker applied

Northern Arizona Healthcare
FMC Urinary Catheter Focus Study
Surgery and PACU*
October 2014 - August 2015
(please note: no audits conducted since June 2015)

FMC Foley use Indicators: Surgery and PACU, Adult patients (n=81)

- Tubing looped/kinked (Goal <10%)
- Urometer overflowing (Goal <10%)
- Bag/meter touching floor (Goal 0%)

Northern Arizona Healthcare
Lessons Learned

Persistence Matters
Know your audience
Open honest communication
Smile while giving orders
Engage staff in the process

DETERMINATION
has to be admired even though you look like a muppet
Consists of 3 in-patient units:

* ICU – 20 beds
* CVICU – 11 beds
* SDU – 22 beds

Semi-open Admission Structure
CCC Pre-Implementation Strengths & Weaknesses

STRENGTHS

* Data driven – quality goals and statistics were visible
* Receptive to standardization and protocols
* Passionate

WEAKNESSES

* Reliance on convenience of hourly output
* Breaking the “we’ve always done it that way” philosophy with catheters
* Lack of catheter product standardization and process for discontinuation
ICUs have highest prevalence of CAUTIs – Now what?

EDUCATION!!!

Re-focus critical thinking with evidence-based reasons for catheter indication

Standardize practices, give clear directives

Audit Tool & EBP Visibility

- Instant indications for evidence-based reasons incorporated into the audit tool
- Simple and Educational

Evidence-Based Reason = CI = Critically ill patient needing accurate measurement of I & O; PS = Post-surgical patient within the first 24-48 hours post-op; UR = Acute urinary retention/obstruction; UP = Urological procedure; IM = Required immobilization for trauma or surgery; CC = Hospice or comfort care; PU = Stage III or IV pressure ulcer; ID = Chronic indwelling catheter prior to admission; RN = Reason not appropriate
Critical Care Skills Labs

* Skills Lab station based off of Audits

* Content
 * 30-45 min station
 * New Kit overview
 * Hands-on & Interactive
 * Conversations about CAUTI prevention

* Updates on improvement and performance in CCC

* Observing metrics that need consistent attention
Critical Care and CVICU

CVICU CAUTI Rates Per 1,000 Device Days

- 55% decrease

ICU N/V CAUTI Rates Per 1,000 Device Days

- 25% decrease

Northern Arizona Healthcare
FMC CV ICU Utilization Ratio

* Data collection was automated in April 2015

NHSN mean: 0.54

FMC Urinary Catheter Focus Study
Urinary Catheter Utilization Benchmarks

Data source: IP-CVD

Stepdown Unit

SOU CAUTI Rates Per 1,000 Device Days

Northern Arizona Healthcare
FMC Urinary Catheter Focus Study
Urinary Catheter Utilization Benchmarks
Data source: IP-CVD

FMC Step Down (SDU and 2CCU) Utilization Ratio
*Data collection was automated in April 2015

NHSN mean: 0.24

0.16 0.20 0.13 0.22 0.12 0.16 0.18 0.15 0.17 0.14 0.15

Medical/Surgical/Telemetry (MST) Unit structure

5 Medical/Surgical/Telemetry Floors
- 3 West
- 3 South
- Humphreys (N/S)
- 2 East/Short Stay
- 3 North

Registered Nurse/Patient Ratios
- Days vs Night
MST Receptiveness to EBP

- Desire to do what is best for the patient
- Time is often a constraint
 - RNs want the information but struggle with having the time for it
Pre-Implementation
Strengths & Weaknesses

* Historical view
 * The other units
 * 3N

* The Good, Bad & the Ugly
 * Good – facility support for protocols
 * Bad – do not execute the protocols predictably
 * Ugly – removing catheters at end of shift
Education and Opportunities for Improvement (OFIs)

- Management involvement
- Peer Audits
- Educators showing the staff the “so what factors”

- OFIs
 - Peer to Peer accountability
Medical Surgical/Telemetry and Orthopedic Units

Med/Surg CAUTI Rate per 1,000 Device Days

Ortho CAUTI Rate per 1,000 Device Days

Northern Arizona Healthcare
FMC Med-Surg Utilization Ratio (excludes 3N)

*NData collection was automated in April 2015

NHSN mean: 0.19

25th%

10th%

FMC Urinary Catheter Focus Study
Urinary Catheter Utilization Benchmarks
Data source: IP-CVD

FMC Ortho/ 3N Utilization Ratio
*Data collection was automated in April 2015

Lessons Learned Throughout the Journey

- LSS and EBP tools are easily integrated to achieve practice and process improvement
- Multiple PDSAs are implemented as part of practice and process change
- Amazing interdepartmental teamwork is essential to move an organization forward
- Highly skilled EBP mentors improve staff engagement and explain the “whys”
- Clear expectations of staff and real-time education are key in promoting practice change
Overall Wins for the Facility

- Minimized clutter of kits and products – streamlined!!
- CAUTI Awareness & staff involvement
- Clear resources for catheter practices (clinical educators)
- Decrease in utilization ratio throughout the hospital
QUESTIONS
References

